Revealing the impact of global warming on climate modes
using transparent machine learning and a suite of climate models
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Abstract

The ocean is key to climate through its ability to
store and transport heat and carbon. From studies
of past climates, it is clear that the ocean can ex-
hibit a range of dramatic variability that could
have catastrophic impacts on society, such as
changes in rainfall, severe weather, sea level rise
and large scale climate patterns. The mechanisms
of change remain obscure, but are explored using
a transparent machine learning method, Tracking
global Heating with Ocean Regimes (THOR) pre-
sented here. We investigate two future scenarios,
one where CO;, is increased by 1% per year, and
one where CO, is abruptly quadrupled. THOR is
engineered combining interpretable and explain-
able methods to reveal its source of predictive
skill. At the core of THOR, is the identification of
dynamically coherent regimes governing the cir-
culation, a fundamental question within oceanog-
raphy. Three key regions are investigated here.
First, the North Atlantic circulation that delivers
heat to the higher latitudes is seen to weaken and
we identify associated dynamical changes. Sec-
ond, the Southern Ocean circulation, the strongest
circulation on earth, is seen to intensify where
we reveal the implications for interactions with
the ice on Antarctica. Third, shifts in ocean cir-
culation regimes are identified in the tropical Pa-
cific region, with potential impacts on the El Nifio
Southern Oscillation, Earth’s dominant source of
year-to-year climate variations affecting weather
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extremes, ecosystems, agriculture, and fisheries.
Together with revealing these climatically rele-
vant ocean dynamics, THOR also constitutes a
step towards trustworthy machine learning called
for within oceanography and beyond because its
predictions are physically tractable. We conclude
with by highlighting open questions and poten-
tially fruitful avenues of further machine learning
applications to climate research.

1. Introduction

The ocean within the global climate exhibits an array of
changes in response to anthropogenic forcing, with vari-
ability poorly constrained by models (Zhang et al., 2019;
Larson et al., 2020; Cheng et al., 2013; Weaver et al., 2012;
Weijer et al., 2020; Meehl et al., 2000). Ocean circulation
changes could have catastrophic impacts on society, such as
changes in rainfall, severe weather, sea level rise and large
scale climate patterns, because of the vast amounts of heat
and carbon it governs. Tools from machine learning (ML)
are well placed to help address challenges towards under-
standing ocean and climate variability. Another key tool to
understand future changes is the Coupled Model Intercom-
parison Project (CMIP6) (Meehl et al., 2000; 2007; Taylor
et al., 2012; Eyring et al., 2015). The CMIP6 ensemble is a
comprehensive ensemble of climate models, and the simula-
tions are vital tools for understanding variability. However,
the model variability often is reduced to bulk metrics e.g.
summarizing complex dynamics with single numbers leav-
ing specific mechanisms opaque (Weijer et al., 2020). This
is because the complexity and size of the CMIP6 model
ensemble can hinder data dissemination and analysis. Such
hurdles are examples of an emerging class of problems in
CMIP6 and beyond, where researchers must handle data that
is increasingly large, potentially sparse, and due to logistics
of e.g. dissemination, often unavailable (Eyring et al., 2019).
The Tracking global Heating with Ocean Regimes (THOR)
method addresses the known capability gap of analysis tools
for climate models (Eyring et al., 2019; Schlund et al., 2020;
Reichstein et al., 2019), while opening the ‘black box’ often
associated with ML applications.



THOR: Revealing the impact of global warming on climate modes

B) Supervised learning using labeled
ocean dynamical regimes

With different inp

Full complexity
ocean model

Figure 1. Sketch of THOR workflow. Method to identify dynam-
ical regimes that are indicative of dynamics contributing to the
AMOC variability. THOR is engineered for interpretability and
explainability of ML predictive skill for transparent, and as such
to move towards trustworthy ML. Figure taken from (Sonnewald
& Lguensat, 2021)

Here, the THOR method is in focus, in particular the way in
which a transparent ML application is crafted combining ML
and oceanographic domain knowledge. We also demonstrate
the power of THOR on three ocean features key to climate
application. First, the North Atlantic circulation that delivers
heat to the higher latitudes is seen to weaken and we identify
associated dynamical changes. Second, the Southern Ocean
circulation, the strongest circulation on earth, is seen to
intensify where we reveal the implications for interactions
with the ice on Antarctica. Third, the El Nino Southern
Oscillation, the dominant climate mode on Earth, is seen
to shift its mean state with implications for the monsoon
and fisheries. The paper concludes with open questions
for the ML community towards making applications more
directly applicable to climate related problems, with a focus
on transparent ML.

2. The Tracking global Heating with Ocean
Regimes (THOR) method

2.1. A brief overview

THOR overcomes two common problems with ML applica-
tions to climate: a lack of labelled data, and the difficulty
of understanding of the applications’ source of predictive
power. Fig. 1 shows the different components of THOR.
Step A creates a labelled dataset. A label effectively con-
stitutes defining consistent phenomena of interest. THOR
uses an unsupervised clustering ML algorithm, namely a
k-means algorithm, to identifies coherent structures within
data from a state estimate (ocean model fit to observational
data, (Wunsch & Heimbach, 2013; Forget et al., 2015)). Six

regimes are identified, and their physical interpretation is
detailed in (Sonnewald & Lguensat, 2021). For brevity in
discussion, the dynamical impacts are described rather than
the regimes in general. The knowledge of which dynamical
drivers are key allows the regimes to be matched with input
features taken only from the surface, that theory suggests
could be good proxies for the dominant terms identified by
the unsupervised ML.

Step B in THOR uses this labelled dataset to train an En-
semble MLP to predict in depth physics using only surface
fields. Step B also addresses the lack of understanding of the
source of predictive skill, a core hurdle to adoption within
climate science (Rudin, 2019; Irrgang et al., 2021; Son-
newald et al., 2021). This is critical for climate applications
and there is no observational ’out of sample’ data to train on,
making generalization (Balaji, 2020), and avoiding under-
specification (D’ Amour et al., 2020) central hurdles. THOR
is deemed transparent using ML that is both interpretable
and explainable (known as IAI and XAl, respectively where
Al stands for artificial intelligence), specifically using the
interpretable first step to feature engineer the second su-
pervised step. For NN and other ‘black-box’ models, Ad-
ditive Feature Attribution (AFA) methods to explain skill
retrospectively are increasing in popularity, and here the
method Layerwise Relevance Propagation is used for rea-
sons discussed below (Olden et al., 2004; Toms et al., 2020;
Lapuschkin et al., 2015; Ribeiro et al., 2016; Lundberg &
Lee, 2017; Montavon et al., 2017; Zeiler & Fergus, 2013;
Rumelhart et al., 1986; Simonyan et al., 2014). The rele-
vances are then combined with domain expertise to ensure
the predictions are rooted in physics. Step C applies THOR
to data from CMIP6.

2.2. Predictions with a neural network

The second step of THOR trains a NN (Fig. 1B) to infer
in-depth dynamics from data that is largely readily available
from for example CMIP6 models, using NN methods to in-
fer the source of predictive skill. The data used is comprised
of labeled input variables referred to as features, with the
dynamical regimes (obtained in Step A) as labels for each
point on the model grid. The input features are engineered
using the knowledge of the most important dynamical terms
from step A: the advective component, the bottom pres-
sure torque and the wind stress torque. The wind stress
torque is largely an available model output, and used as a
feature. To approximate the torques from interactions of
bottom pressure with the bathymetry, the depth (H) and sea
level (n) are used, with 7 as a proxy for the pressure at the
bottom (Hughes & de Cuevas, 2001; Losch et al., 2004).
The advective component is influenced by the wind stress
torque (V x ), Coriolis (f) and 1 (Buckley & Marshall,
2016; Bingham & Hughes, 2009; Wang et al., 2015). The f
and gradients of the n term reflect the surface geostrophic
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velocity. In sum the features are: wind stress torque, H, f
and 7, and the latitudinal and longitudinal gradients of H
and 7.

A fully connected multilayer perceptron (MLP) NN is used.
MLPs are powerful universal function approximators, and
particularly suited for multi-class classification applications
(Cybenko, 1989). Testing, training and validation data were
split by ocean basin, ensuring independence. Training in-
put data were normalized to have a zero-mean and a unit-
variance. The MLP retained in this work was the result
of a hyperparameter search using Hyperband (Li et al.,
2017), based on the implementation provided in Keras-
Tuner (O’Malley et al., 2019). The search space was the
number of neurons {8,16,32,64,128} and the number of
layers {from 2 to 5}, we manually tested different activation
function from {ReLU, SeLU, Tanh} and found Tanh to lead
to slightly better performances. The hyperparameter search
resulted in a 4-layer MLP with respectively 24-24-16-16
neurons and Tanh activations, a softmax layer is used for
the final layer. Training was done using backpropagation
combined with a stochastic gradient descent algorithm, here
ADAM (Kingma & Ba, 2014), with a learning rate of 10~*
and early stopping if the validation loss stops improving
after 5 iterations. In order to improve the robustness of
the ML method an Ensemble MLP was used, where many
instances of the MLP are trained. This is known to improve
the generalization capacity and to weaken the dependence
on the initial training parameters. The THOR Ensemble
MLP is composed of 50 MLP renditions using the same ar-
chitecture, as described above. When predicting the classes,
an average over the 50 softmax probabilities for each pixel
was done. The predicted class for a position is then the one
with the maximum probability.

Code was written using the Python-based Keras library
(Chollet et al., 2015) and makes use of several other open
source libraries (Pedregosa et al., 2011; Hoyer & Hamman,
2017; Harris et al., 2020; Hamman et al., 2018).

2.3. Explaining the prediction skill: LRP +
oceanographic theory

Using supervised ML, being able to explain the source of
predictive skill and move beyond a ‘black box’ approach,
to achieve transparency, is often non-trivial. This difficulty
should not detract from the importance of transparent ML ap-
plications, as leveraging the combination of domain knowl-
edge and emerging ML techniques such as AFA could be
of pivotal importance for applications within the physical
sciences (Sonnewald et al., 2021; Balaji, 2020; Irrgang et al.,
2021; McGovern et al., 2019; Toms et al., 2020). Step B
of THOR assesses which features in the input vector give
rise to the predictive skill using LRP (Bach et al., 2015;
Binder et al., 2016). Other methods were also tested, but
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Figure 2. THOR as used in the “test phase”. For a new ocean
model, the predictions and relevances are averaged for each point
(1at, lon) over the Ensemble MLP. Figure taken from (Sonnewald
& Lguensat, 2021)

overall the LRP method was most robust to local perturba-
tions, and deemed most reliable. To construct the ‘heatmap’,
individual contributions (called relevance) are calculated
from input nodes to the output classification score. A pos-
itive/negative relevance suggests that a feature contributes
positively/negatively to NN decision (Lapuschkin et al.,
2015). The contributions are calculated layer by layer from
the output layer to the input layer. To illustrate, at layer [,
the relevance of a neuron ¢ is the sum of ‘messages’ REZ;U
from all the neurons j belonging to layer [ 4 1 (Binder et al.,
2016). These messages are calculated using different vari-
ants of the LRP, here an e-rule was used that helps avoid
numerical issues when dividing by small numbers:

(L,1+1) _ Zij (141)
Ry = zj + € - sign(z;) By
where z;; are weighted activations (multiplication of the
activation at neuron ¢ with the NN weight from neuron @
to j), and z; is the sum of weighted activation linked to
neuron j. A scaling of the relevance maps to lie between
-1 and 1 is standard. The relevance maps shown in Figure
5 are the average of the 50 LRP relevance maps calculated
using the Ensemble MLP. For geoscientific applications,
the positive component of LRP have previously been used
to demonstrate different sources of relevance for El Nifio
event patterns from the eastern Pacific and the central Pacific
(Toms et al., 2020). In this work, the LRP-¢ implementation
provided by the iNNvestigate (Alber et al., 2019) library
was used, that supports Keras-written models. Figure 2
illustrates the complete pipeline when using THOR, the En-
semble MLP is already trained and the user can use it to
obtain the dynamical ocean regime classification on their
ocean model of interest. Similarly, The user can also get
the LRP predictions that explain the positive/negative rele-
vances of the input features.

For each dynamical regime, the relevance contributions are
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assessed as the mean and standard deviation across region
spatially. Positive and negative relevance contributions
are treated separately. The information the LRP provides
should not be interpreted directly in terms of the theoretical
rationale used to select the input features. Rather, the
LRP provides a posteriori assessment of the detailed
adjustments of the Ensemble MLP at each location,
where the absence of a term can also contribute positive
relevance. There is considerable spatial variability, as
reflected by the standard deviation, but it is notable that
all terms contribute positively. The ability to explain the
Ensemble MLPs skill lends confidence to its subsequent
predictions. Assessing the relevance metric highlights the
physical underpinning of the Ensemble MLP skill, and
means that THOR can be applied with more confidence in
previously unseen models or under different climate forcing.

3. Application to understand the ocean under
climate change

We now apply THOR to the CMIP6 models Geophysical
Fluid Dynamics Laboratory (GFDL) Earth System Model
4.1 (ESM4.1 (Dunne et al., 2020; Krasting et al., 2018)) and
the IPSL-CM6A-LR model (Boucher et al., 2018; 2020).
THOR is applied to a "historical’ (1992-2011) scenario, and
the 60 last years of scenarios where the COy is 1% per year,
and one where COs, is abruptly quadrupled (Fig. 3, white
indicates inconsistent recognition).

The North Atlantic Overturning Circulation (AMOC)
Overall, it is known that the AMOC weakens in a warmer
climate. Here in Fig. 3 rows 1-3, the dark blue region (MD)
shifts south and east, signifying less heat being transported
north. This is stronger in IPSL-CM6A-LR than ESM4.1.
There is a distinct shift with the orange region (TR) towards
the west, signifying less dense waters forming, also stronger
in IPSL-CM6A-LR. For the 4xAbrupt CO, the changes are
bigger.

The El Nino Southern Oscillation (ENSO) The ENSO
(Fig. 3 rows 4-6) change in mean state shows a widen-
ing of the pink (N-SV) regime stretching westwards from
South America, signifying strengthened delivery of cold
waters. This change is bigger for IPSL-CM6A-LR. The
green regimes (S-SV) also widen, which are a signature of
waters being pushed towards the equator by winds. These
regime shifts and inter-model differences are linked to the
time-mean patterns of surface winds and mixed layer depths
in this region, which strongly modulate ENSO’s behav-
ior, impacts, and predictability (Guilyardi et al., 2020; Fe-
dorov et al., 2020; Ding et al., 2020; Stevenson et al., 2021).
Changes seen between the forcing scenarios are less marked
than for the AMOC.

The Southern Ocean circulation The Southern Ocean is
shown for a section called the Weddell Sea. Here a large
wind gyre interacts with the current circling Antarctica (Fig.
3 rows 7-9), which does not change its position and strength
markedly. The gray region (SO) widens, and moves into the
pink region (N-SV). The gray regime increasing in size signi-
fies a strengthening of the current system bringing up waters
from great depths to be cooled and returned northwards.
This is known to compensate for a weakened AMOC. This
shift appears greater in ESM4.1 than in the IPSL-CM6A-
LR model, but for both increases with increased forcing, as
expected.

Figure 3. THOR applied to IPSL-CM6A-LR and ESM4.1 for the
North Atlantic (top 3 rows), the tropical Pacific/ENSO region
(row 4-6) and the southern Ocean (rows 6-9). Left column in the
IPSL-CM6A-LR model and right column is the ESM4.1 model.
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4. Conclusion
4.1. Discussion

Understanding how the climate has changed in the past and
may change in the future is one the main reasons why sev-
eral modeling groups around the world develop and analyze
climate models. THOR could accelerate analysis and dis-
semination of climate model data needing only depth, sea
level and wind stress which are in largely part of standard
outputs of model efforts such as CMIP6. To ensure gen-
eralization, THOR has been designed and developed with
interpretability and explainability in mind, towards a trans-
parent method tailored for climate applications. THOR is a
product of cross-fertilization between researchers in ML and
in climate modeling, specifically oceanography. Domain
expertise was key to validate the results of the k-means clus-
tering and of the Ensemble MLP training + LRP relevance.
However, assuring generalization means also that THOR
should only be applied to similar horizontal resolutions
than of the ECCO model on which it was trained. We note
that the transparency of the predictive skill associated with
THOR underscores its applicability to climate related re-
search. This is because the predictions are rooted in known
physics, and as such are less vulnerable to misclassification
in out-of-sample applications.

4.2. Future directions and open questions for the
machine learning community

Future work will include the application of THOR to several
other CMIP6 models under climate change scenarios. Note
that our method is fast and scalable (since we use it in a
test mode), and could help accelerate large scale analysis of
climate models.

From a ML perspective, we state here some of the impor-
tant research questions where the ML community can have
valuable contribution:

 The use of neural networks was motivated by their flex-
ibility and because they can be trained efficiently with
a large amount of data. Other ML techniques such as
Random Forests (RF) might be interesting to consider
especially when also using XAI methods specifically
tailored for them (see Appendix A for an example)

* Investigating other XAI techniques such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg & Lee,
2017) can be useful to measure how robust they are,
and if they lead to the same conclusions as the ones
found with LRP.

* Most importantly, several works in the literature have
pointed out limitations of XAlI techniques (Slack et al.,
2020; Alvarez-Melis & Jaakkola, 2018). In this work,

we used an ensemble to ensure more robust LRP pre-
dictions. Reseach efforts in making XAI techniques
more robust and reliable, combined with incorporation
of physical knowledge needs to be prioritized.

* The idea of using ensembles was also done to estimate
the uncertainties of the predictions, and of the LRP
explanations. Uncertainty quantification is without a
doubt important for climate model applications. Devel-
opments in ML techniques that quantify the uncertainty
associated with predictions are of pivotal importance.
A potentially fruitful avenue of research might be the
use of Bayesian Neural Networks (BNNs) instead of
the Ensemble MLP, but then XAI methods adapted for
BNNSs need to be explored (Bykov et al., 2020).

Software and Data

The Earth System Grid Federation portal (ESGF) was used
to get the CMIP6 data. ESM4.1 data available at https:
//esgf-node.llnl.gov/search/cmip6/. Code
is available through GitHub https://github.com/
maikejulie/DNN4Clim and fully reproducible also
within the Amazon Cloud. ECCOv4r3 data available at:
https://ecco-group.org/products.htm.
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A. Random Forest based THOR

Step 2 of the THOR method can be conducted using other
ML techniques, we developed also a Random Forest based
version using LightGBMs. Confusion matrices of the pre-
diction results can be found in Figure 4. Using split-based
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feature importance we notice that the wind stress curl fea-
ture is the most important feature for the classification which
confirms results found the MLP used originally in THOR.
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Figure 4. Confusion matrices for train and validation data when
using the LightGBM based THOR.
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Figure 5. The spatial relevance maps. The dynamical regimes
(columns) and the input features (rows) illustrating the contribu-
tions to the skill of the Ensemble MLP. The relevances are averaged
for each point (lat, lon) over the Ensemble MLP. Figure from (Son-
newald & Lguensat, 2021)

B. LRP: Spatial representation of
interpretability/explainability

The spatial maps of the interpretability (Figure 5) show
intricate detail of what contributes to the Ensemble MLP
learning. The mapping between feature relevance and the
oceanographic equation terms is not direct, but through
the equation transform component of step A in THOR, the
relevance maps can be evaluated in terms of an interpretation
based on known physics. What is meant by the mapping
not being direct is that there is important information also
in what the Ensemble MLP found unhelpful. It is also
interesting to note that the role of the ocean bathymetry is
evident in all but the wind stress curl feature. Bathymetry
here is distinct from the feature H. For the feature H, both
the latitudinal and longitudinal gradients show equivalent
patterns in longitude and latitude. The bathymetry also
seems largely absent from the n feature importance overall.
It is interesting that the N-SV regime has positive relevance
to the west of the Mid-Atlantic ridge, and negative to the
east. Overall, the spatial relevances reveal that the standard
deviations of the relevances can serve as a proxy for rich
spatial structure.
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Figure 6. THOR applied to the North Atlantic.
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C. Further THOR CMIP6 model applications

As an example of further applications of THOR, mod-
els from the CMIP6 ensemble were analysed and results
presented for the North Atlantic (Figure 6), the South-
ern Ocean (Figure 7) and the Tropical Pacific (Figure
8). The data from these models is available through
in the Amazon cloud as discussed and demonstrated in
github.com/maikejulie/DNN4C1li.

The models used in addition to the ESM4 and IPSL model
are the UK Earth System Model UKESM1-0-LL (Tang et al.,
2019) and the French National Centre for Meteorological
Research model CNRM-ESM2-1 (Seferian, 2018). Deeper
analysis of present physics are the subject of present work.
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Figure 8. THOR applied to the Tropical Pacific.
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